
- Forschung
Meldung vom: | Verfasser/in: Angelika Schimmel
Ein internationales Forschungsteam unter der Leitung von Prof. Tomoki Nakamura (Tohoku, Japan) hat Bodenproben untersucht, die die japanische Raumsonde Hayabusa-2 auf dem Asteroiden Ryugu einsammelte. Prof. Dr. Falko Langenhorst von der Friedrich-Schiller-Universit?t Jena geh?rte zu der Gruppe, die aus der Analyse des au?erirdischen Materials Erkenntnisse über die Entstehung des Asteroiden und die einzigartigen Prozesse gewann, die sich in den ersten fünf Millionen Jahren nach der Geburt unseres Sonnensystems abspielten.
Prof. Langenhorst hatte schon Staub des Asteroiden Itokawa, Materie von Marsmeteoriten und interstellaren Staub, den die NASA-Sonde ?Stardust“ im Weltall einsammelte, unter seinem Mikroskop. Seine Expertise als Meteoritenforscher machte ihn zuletzt zum Mitglied eines ausgesuchten internationalen Forschungsteams bei der Mission der Weltraumsonde ?Hayabusa-2“ zum Asteroiden Ryugu. Unterm Transmissions-Elektronen-Mikroskop untersuchte der Jenaer Forscher in den Bruchstücken vom steinernen Kleinplaneten Minerale, die in astronomischen Dimensionen sehr konkrete Aussagen zur ?Geburtsstunde“ des Asteroiden zulassen. Was dabei wann und wo in unserem Sonnensystem passierte, davon berichtet das ?Stone“-Team jetzt erstmals in einem Artikel in ?Science“.
Asteroiden enthalten wichtige Informationen über den Beginn unseres Sonnensystems
Sie sind manchmal nur etwas gr??er als ein Auto, manchmal aber auch sind es Gesteinsbrocken von einem und mehr Kilometern Durchmesser, die auf festen Bahnen die Sonne umkreisen. Die Rede ist von Asteroiden oder Planetoiden, von denen Millionen in unserem Sonnensystem ihre Bahnen ziehen. 90 Prozent davon sind im sogenannten Asteroidengürtel zwischen den Planeten Jupiter und Mars unterwegs, einige jedoch kommen der Sonne und damit auch der Erde viel n?her. Zu den sogenannten erdnahen Asteroiden geh?rt auch ?Ryugu“, ein Gesteinsbrocken von rund einem Kilometer Durchmesser, der einem auf einer Ecke stehenden Pflasterstein ?hnelt. Für seinen Flug um die Sonne in einer Entfernung von 0,96 bis 1,42 Astronomischen Einheiten braucht er 474,5 Tage und kreuzt dabei auch die Erdumlaufbahn. Das macht ihn zu einem besonders interessanten Forschungsobjekt für die Astrowissenschaft.
?Himmelsk?rper wie Asteroide, beziehungsweise die von ihnen stammenden Meteorite, sind so faszinierend, weil sie uns einzigartige Informationen über die Anf?nge unseres Sonnensystems liefern“, sagt Langenhorst. Der Professor für Analytische Mineralogie der Mikro- und Nanostrukturen an der Universit?t Jena ist seit langem damit besch?ftigt, Materie aus dem Weltall bis ins kleinste Detail zu analysieren, um die Prozesse bei der Entstehung und Formierung unseres Sonnensystems aufkl?ren zu helfen.
Jenaer Expertise für Meteoriten und Asteroiden
Er war schon 2006 an der ?Sternenstaub“- (Stardust)-Mission der NASA zu einem Kometen beteiligt. Langenhorsts Expertise als Astro-Mineraloge war auch gefragt bei der 2003 gestarteten ersten Mission einer japanischen Raumsonde zum Asteroiden Itokawa. Die Sonde wurde nach dem scharfsichtigen Wanderfalken ?Hayabusa“ benannt. Der Jenaer geh?rte zu dem internationalen Team, das den extraterrestrischen Staub von der Itokawa-Oberfl?che untersuchte, den die Sonde 2010 zur Erde gebracht hatte. ?Material in der Hand zu halten, das von einem Himmelsk?rper stammt, der seit Jahrmillionen seine Bahn im Weltall zieht, ist schon faszinierend“, gesteht Langenhorst. Diesen Staubk?rnern ihr Geheimnis zu entlocken, treibe ihn immer wieder aufs Neue an.
Seine Mitwirkung im Forschungsteam der Hayabusa-2-Mission wurde nun wieder von den japanischen Kollegen angefragt. 2014 bestimmte die Japan Aerospace Exploration Agency (JAXA) den Asteroiden Ryugu als Ziel ihrer Hayabusa-2-Mission. Die Raumsonde erreichte nach mehrj?hrigem Flug den Kleinplaneten Ryugu und schickte 2018 nicht nur erstaunliche Fotos von dem Himmelsk?rper zur Erde, sondern brachte zwei Jahre sp?ter auch Gesteinsmaterial von dort mit zurück. ?W?hrend Hayabusa 1 aufgewirbelten Staub eingesammelt hatte, dessen gr??tes Korn etwa 0,3 Millimeter klein war, brachte die Sonde diesmal zahlreiche, mehrere Millimeter gro?e Bruchstücke von Ryugu zur Erde“, erkl?rt Langenhorst. Seine Aufgabe war es, die Minerale in den Gesteinsbruchstücken von Ryugu zu identifizieren und die Verteilung der chemischen Elemente darin zu analysieren.
Asteroid Ryugu ist kein kompakter Felsbrocken, sondern ein Scherbenhaufen
?Dabei arbeitete ich mit einem Transmissions-Elektronen-Mikroskop, das mit einer Aufl?sung von unter einem Nanometer erstaunliche Details des Materials offenbarte“, erkl?rt er. ?So haben wir festgestellt, dass Ryugu ein sogenannter ,Schutthaufen-Asteroid' ist, auf Englisch ,Rubble Pile'. Das Gestein ist nicht kompakt, sondern besteht aus unz?hligen, quasi zusammengebackenen Gesteinsscherben“, beschreibt Langenhorst seine Beobachtungen. Das lasse den Rückschluss zu, dass der heutige Asteroid Ryugu sich erst aus den Trümmern eines Einschlags auf einem ursprünglich deutlich gr??eren Ur-Asteroiden zusammengeballt hatte.
Die Kristallstruktur und Zusammensetzung der Minerale sind ein Archiv der Asteroiden-Kinderstube
Die Forscher fanden auch Belege dafür, dass die ?Kinderstube“ von Ryugu nicht im zentrumsnahen Bereich unseres Sonnensystems gelegen hat, wo sich der Asteroid heute bewegt, sondern im ?u?eren Bereich des Sonnensystems. ?Dort herrschen Temperaturen deutlich unter dem Gefrierpunkt, dabei kondensieren Wasser und andere leichte Moleküle wie Methan und Ammoniak zu Eisen und ballen sich mit Mineralstaub zu ?dreckigen Schneeb?llen? zusammen, den Kometen. Da jedoch in der Frühphase des Sonnensystems auch kurzlebige radioaktive Elemente beteiligt waren, erw?rmte sich Ryugu relativ schnell nach der Zusammenballung, sodass das Eis schmolz und Mineralreaktionen einsetzten“, erkl?rt Langenhorst. Denkbar sei, dass Ryugu also früher ein Komet war. Bei seiner Ann?herung an die Sonne sei das Wasser gewisserma?en verdunstet und der feste Staub blieb übrig.
Wasser und organische Materie in den Asteroiden-Trümmern gefunden
Das Hayabusa-2-Team machte dazu neue Entdeckungen. Einer seiner Kollegen entdeckte in einem Staubkorn vom Asteroiden einen Wassereinschluss, der neben Kohlens?ure und Salz auch organische Moleküle enthielt. Andere fanden ein tausendstel Millimeter kleine Kügelchen organischen Materials im au?erirdischen Gestein.
Vergleichbares kannte man aus Untersuchungen an einem Meteoriten namens Ivuna, der 1938 in Tansania gefunden wurde, und der in die Gruppe der kohligen Chondrite geh?rt.? ?Ivuna ist unserem Ryugu zum Verwechseln ?hnlich“, berichtet er. Die kohligen Chondrite, so erkl?rt der Wissenschaftler, seien die ?ltesten Gesteine unseres Sonnensystems. ?Als Urmaterie geben sie am besten die Zusammensetzung unseres Sonnensystems wieder.“
Die neuen Erkenntnisse über Evolution und Diversit?t der Minerale und anderen Bestandteile der Ryugu-Bodenproben versetzen die Forscher jetzt in die Lage, Aussagen über die Zeit zu treffen, in der der Asteroid entstand und sich entwickelte. ?Wir vermuten, dass Ryugu von einem ?lteren gro?en Asteroiden abstammt. Dieser Ur-Asteroid bildete sich innerhalb von nur zwei Millionen Jahren nach der Geburt des Sonnensystems in dessen ?u?erem Bereich, wo Wasser und andere Moleküle als Eis vorhanden waren. Unter radioaktiver Erw?rmung schmolz das Eis, wobei sich in diesem Prozess der aquatischen Alteration neue Minerale wie Schichtsilikate, Carbonate und Eisenoxide im Ur-Asteroiden kristallisierten. All diese Prozesse waren nach nur etwa fünf Millionen Jahren beendet. Danach kam es zu der kosmischen Kollision, bei der Teile des Ur-Asteroiden abgesprengt wurden, aus denen sich der neue Asteroid Ryugu formte“, fasst Langenhorst die Ergebnisse des Forschungsteams zusammen.
?Auch wenn wir Prozesse aus der Frühzeit unseres Sonnensystems immer besser aufkl?ren, so ist es wohl unwahrscheinlich, die R?tsel um den Beginn unseres Sonnensystems je vollst?ndig l?sen zu k?nnen“, r?umt er ein.? Dass er aktuell an weiteren astro-mineralogischen Themen arbeitet, zeigt jedoch, dass man sich da nicht ganz sicher sein sollte.
Prof. Dr. Falko Langenhorst an einem Transmissionselektronenmikroskop.
Foto: Jens Meyer (Universit?t Jena)Original-Publikation:
Nakamura et al., "Formation and evolution of carbonaceous asteroid Ryugu: Direct evidence from return samples", Science (2022), DOI: 10.1126/science.abn8671Externer Link